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A B S T R A C T

Emerging human coronaviruses, including the recently identified SARS-CoV-2, are relevant

respiratory pathogens due to their potential to cause epidemics with high case fatality

rates, although endemic coronaviruses are also important for immunocompromised

patients. Long-term coronavirus infections had been described mainly in experimental

models, but it is currently evident that SARS-CoV-2 genomic-RNA can persist for many

weeks in the respiratory tract of some individuals clinically recovered from coronavirus

infectious disease-19 (COVID-19), despite a lack of isolation of infectious virus. It is still not

clear whether persistence of such viral RNA may be pathogenic for the host and related to

long-term sequelae.

In this review, we summarize evidence of SARS-CoV-2 RNA persistence in respiratory sam-

ples besides results obtained from cell culture and histopathology describing long-term

coronavirus infection. We also comment on potential mechanisms of coronavirus persis-

tence and relevance for pathogenesis.

� 2021 Sociedade Brasileira de Infectologia. Published by Elsevier España, S.L.U. This is an
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Introduction

Human coronaviruses (hCoV) were first identified in the 1960s
(e.g. strains 229E and OC43) as pathogens associated with
upper respiratory tract infections and occasionally with cases
of pneumonia in infants and adults.1,2 After 2002, it has been
identified five new hCoV including two related to common
cold, bronquiolitis and pneumonia (HKU1 and NL63), as well
as three etiological agents of severe acute respiratory syn-
drome (SARS-CoV, MERS-CoV and SARS-CoV-2).3−5

SARS-CoV emerged at the beginning of November 2002 in
Guangdong Province, China, and disseminated to 32 countries
and regions producing 8437 cases of severe acute respiratory
syndrome (SARS), besides 813 deaths by July 2003; no SARS-
CoV related disease has been reported since January 2004.6,7

The Middle East respiratory syndrome (MERS) was described
in 2012 in Saudi Arabia, in a man with acute pneumonia and
renal failure; the MERS-CoV was isolated as the etiological
agent. From June 2012 to May 2019, there have been a total of
2442 confirmed cases of MERS and 843 related deaths in 27
countries.6,8 Surveillance about suspected MERS-CoV infec-
tion is currently recommended by WHO to detect early cases
and prevent clusters.9
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In late December 2019, cases of pneumonia of unknown
etiology were reported in Wuhan, China, and in subsequent
weeks, it was identified a novel coronavirus currently named
SARS-CoV-2, as the causal agent. Since then, SARS-CoV-2
spread globally causing a pandemic with 147,539,302 cases of
coronavirus infectious disease-19 (COVID-19) and 3116,444
deaths (up to April 27, 2021).10 Besides asymptomatic, COVID-
19 includes clinical presentations that can be categorized as
mild, moderate (no-severe pneumonia), severe (pneumonia),
and critical illness.11,12 Chronic conditions such as hyperten-
sion, cardiovascular disease and diabetes influence the sever-
ity of COVID-19 and time to recovery. Detection of SARS-CoV-
2 is usually performed by quantitative RT-PCR and higher
viral loads are often associated with severe symptoms13,14;
although it has also been reported cases of subjects develop-
ing mild COVID-19 with high viral loads, achieving clearance
of infectious virus and viral RNA within one and three weeks
after symptoms onset, respectively.15

Long-term viral RNA detection has also been described in
patients recovered from COVID-19, despite no identification
of infectious viral particles.16,17 Such observations have sup-
ported the criteria for releasing COVID-19 patients from isola-
tion even before obtaining a negative RT-PCR test.18 However,
it is still not clear whether SARS-CoV-2 RNA persistence
might be pathogenic for the host, despite a lack of assembled
infectious virus.

Here, we summarize evidence of SARS-CoV-2 RNA persis-
tence in respiratory samples besides results from cell culture
and histopathology describing long-term productive and non-
productive coronavirus infection in epithelial, myeloid and
neural cells. We also comment on possible mechanisms of
coronavirus persistence and relevance for pathogenesis.
Long-term detection of SARS-CoV-2-RNA in clinical
samples

Long-term SARS-CoV-2-RNA detection is frequent19−21 in 13
−45% of patients with COVID-19.22−25 In the third week after
symptom onset, RT-PCR positive tests can be detected in 43
−66% of patients with mild-to-moderate COVID-19 or in those
hospitalized,25,26 and then occurs a progressive reduction to
32% in the fourth week, whereas most of cases display nega-
tive tests in the sixth-to-seventh weeks. As negative results
are prevalent since the fourth week, virus RNA persistence
could be considered after 28 days of symptom onset.23,25,27,28

In a retrospective study (n = 2142), patients with critical
COVID-19 were longer positive for viral RNA than non-criti-
cally ill patients (median time, 24 days vs. 18 days, respec-
tively), according to analysis of nasopharyngeal swabs (NPS);
similarly, serum biomarkers such as IL-6, IL-8, aspartate ami-
notransferase, IL-2 receptor, D-dimer and C-reactive protein
remained higher in the former group, all along virus nucleic
acid persistence.29 Inside the non-critical group, 20% of sub-
jects with low IgM levels also remained positive for viral RNA
up to 73 days after symptom onset, with respect to non-criti-
cal COVID-19 patients with higher IgM levels that cleared ear-
lier the viral infection. Convalescent plasma was
administered to persistently RNA positive patients resulting
in test negativization within two weeks after this passive
immunization, supporting that anti-SARS-CoV-2 antibodies
are important for viral clearance.29 Another study that
included 43 patients with mild COVID-19 and six with severe
disease reported median time for negative RT-PCR tests of
22.7 days and 33.5 days, respectively.16 Additional reports
have shown that viral load is significantly higher in patients
with severe disease than in those with mild COVID-19 and
that viral RNA clearance is delayed in subjects with severe
symptoms or in patients under corticosteroid treatment.30,31

By contrast, another study that analyzed upper respiratory
samples from patients categorized in groups of moderate-to-
severe (hospitalized) and mild disease, reported that the hos-
pitalized group displayed viral RNA for 28.0 § 10.1 days,
whereas patients with mild COVID-19 were positive for
35.3 § 8.0 days, suggesting this last group was slower to elimi-
nate viral infection. Interestingly, in this same study IgG titers
were lower in mild than in hospitalized patients, thus, higher
antibody titers are associated with enhanced viral elimina-
tion but also could be related to severe forms of COVID-19.23

In this regard, it has been observed significantly increased
serum titers of IgM, IgA and IgG3 antibodies against the recep-
tor-binding domain (RBD) of the spike envelope protein in
severe and critically ill COVID-19 patients, compared to
patients with mild disease. Similar results have been
observed during titration of neutralizing antibodies, which
are always higher in hospitalized individuals.32,33 In vitro
assays with sera from severe patients revealed high levels of
a low-fucosylated IgG1 which, similarly to IgG3, forms
immune complexes with SARS-CoV-2 spike pseudotyped VSV
viruses, that bind and activate FCgRIIIa signaling to produce
high levels of IL-6, TNF and IL-1b in monocytes and natural
killer cells, suggesting that the antibody effector function con-
tribute to the “storm of cytokines” observed in severe COVID-
19.34 Thus, quantitative and qualitative characteristics of the
antibody response might be determinant in kinetics of viral
clearance and the outcome of the disease.

Additionally to clinical status, age is another factor associ-
ated to SARS-CoV-2 RNA persistence.22 In this respect, analy-
sis by age and disease severity have shown that viral RNA
shedding is significantly longer in respiratory samples from
subjects older than 60 years that coursed with severe COVID-
19 than in younger people under similar clinical conditions.31

A study with 384 patients of a median age of 58 years reported
that elderly was a significant factor associated with prolonged
viral RNA detection, with median time of 32 days (range 4
−111 days); patients older than 70 years showed virus genome
persistence over 70 days.35

Despite only some studies have evaluated presence of rep-
lication-competent virus, possibly due to infrastructure limi-
tations to handle pathogens at Biosafety Level-3, it is
currently clear that RNA detection is of longer duration than
isolation-time of infectious virus in cell culture, since samples
become negative to viable virus within eight to ten days after
symptoms onset.36−38 Nevertheless, studies that included
patients with severe COVID-19 reported isolation of infectious
viral particles at day 20.19,36 Probability of detection of infec-
tious virus at 15 days post-symptom onset has been esti-
mated lower than 5%,36 suggesting that even though viral
RNA is long-term maintained in convalescent patients, they
might not be contagious through respiratory secretions.
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Nevertheless, Li et al. described isolation of viable virus in
Vero E6 cells from sputum collected at 73 and 102 days after
disease onset from two elderly patients clinically recovered,
although they still showed persistent lung abnormalities by
chest computed tomography. In this study, reinfection was
not considered as responsible for longstanding viral shed-
ding, since sequencing of SARS-CoV-2 genome from two con-
secutive samples (separated by 20 days) collected from two
subjects, revealed 100% sequence identity (only one substitu-
tion in one paired sample), suggesting no new viral infection
had occurred and that few prolonged viral RNA carriers from
the aged group might propagate infection longer than
expected.17

Furthermore, an immunocompromised state is also asso-
ciated to high frequency of SARS-CoV-2 persistence, as it has
been observed in oncologic patients and transplant recipi-
ents.39−48 Worth mentioning, viral RNA of NL63-CoV has also
been detected up to »60 days in cancer patients that develop
respiratory symptoms, whereas 229E-CoV was detected over
a period of 77 days in a pediatric patient with a brain tumor,
indicating coronaviruses are opportunistic pathogens.49,50

Table 1 displays a summary of case reports for SARS-CoV-2
infected patients that presented immunosuppression.

Interestingly, the longest time for RNA detection was
151 days, in a man with anti-phospholipid syndrome and dif-
fuse alveolar hemorrhage that developed complications and
coinfection with Aspergillus fumigatus, leading to fatal out-
come.48 Another case of prolonged SARS-CoV-2 RNA detec-
tion and isolation of replication-competent virus showed
positivity for 105 and 70 days, respectively, in a woman with
chronic lymphocytic leukemia that developed a secondary
hypogammaglobulinemia.39 Viral infection coursed asymp-
tomatic, similarly to many SARS-CoV-2 infections in immu-
nocompromised patients. Therefore, immunosuppression
entails viral RNA persistence, as also occurs in some elderly
people (Fig. 1). However, it is still uncertain the biological rele-
vance and mechanisms associated with long-term coronavi-
rus persistence. Therefore, in the following section we
comment some findings in cell culture and histopathology
that propose coronavirus persistence might contribute to
pathogenesis in infected individuals.
Coronavirus persistence in experimental models

Viral persistence

Persistent viral infections are established by concurrence of
molecular and immunological events that allow the virus to
evade the immune response and acquire a gene expression
program to regulate both its own replication (to avoid killing
the host cell) and host gene expression, enabling a long-last-
ing virus−host interaction.51,52 Persistence can occur as pro-
ductive or non-productive infection. In the former type of
persistence, virions are detected constantly or intermittently,
whereas in the latter type, infectious viruses are not pro-
duced, regardless of viral genome remaining intracellular and
expression of some viral proteins may take place.53 Under
such condition, kinetics of detection of the persistent virus
genome might be determined by rates of residual RNA
replication and its catabolic degradation, as well as by lysis of
viral RNA positive cells through cell-mediated cytotoxicity.53

Thus, SARS-CoV-2 possibly establishes a non-productive
viral persistence in some individuals, since infection progress
from a productive state to a persistent condition with mea-
surable viral RNA but undetectable release of infectious virus;
although shedding of viable virus is apparently of longer
duration in immunocompromised and elderly patients, than
in those immunocompetent.

Contribution of SARS-CoV-2 RNA persistence to COVID-19
pathogenesis is not currently understood but it could not be
discarded this viral RNA and possibly some viral proteins still
expressed, might be continual stimuli that activate at least
innate immune receptors, maintaining an inflammatory con-
dition up to complete viral clearance.54

Evidence of persistence in epithelial cells

A non-productive infection by hCoV in respiratory epithelium
was described by Loo et al. in an in vitro model of infection of
human bronchial epithelial cells (HBECs) with 229E-CoV and
OC43-CoV.55 Kinetics of replication of 229E-CoV was faster
than that of OC43-CoV, with viral RNA copies and infectious
virus titers peaking at 24 and 96 h post-infection (hpi), respec-
tively. At seven days post-infection, both types of coronavi-
rus-infected HBECs showed similar number of viral RNA
copies (»105/ml), despite infectious virus was only isolated
from OC43-CoV infected cells (»104 TCID50/ml), suggesting
that genomic RNA from 229E-CoV persisted intracellular
without virions assembly. Such observation correlates with
detection of genomic and subgenomic viral RNA from
SARS-CoV-2 in respiratory samples from COVID-19
patients, even in absence of virus isolation.56 Of relevance,
229E-CoV induced synthesis of high levels of type-I and
type-III interferon in HBECs, contrasting with results by
OC43-CoV infection. Also, a productive persistent infection
was described at 28 days post-infection in OC43-CoV-
infected airway epithelial cells, with viral loads of »107

virus genome copies/sample and undetectable synthesis of
IFN-λ.57 Possibly both, low and slow kinetics of replication
of the OC43-CoV contributed to evade its early detection by
intracellular innate immune recognition receptors, allowing
a prolonged productive persistence.55

A comparative study of infection of SARS-CoV and SARS-
CoV-2 in lung tissue explants along 48 h showed that both
viruses have tropism by type I and type II pneumocytes as
well as by alveolar macrophages. However, SARS-CoV-2 gen-
erated higher titers of infectious virus than SARS-CoV (3.2-
fold increase), associated with a lack of induction of IFN-I,
IFN-II and IFN-III, but augmented transcription of IL-6, MCP-1,
CXCL1, CXCL5 and CXCL10. In this case, SARS-CoV induced
mRNA expression of six additional proinflammatory cyto-
kines and chemokines that were not stimulated by SARS-
CoV-258; authors suggested that such exacerbated proinflam-
matory state could be related to the higher fatality rate of
SARS-CoV with respect to SARS-CoV-2. This study did not
evaluated virus persistence but considered a particular capa-
bility of evasion of the innate immune response is character-
istic of SARS-CoV-2, allowing early high viral loads and
efficient dissemination to new hosts. In this regard, Xia et al.



Table 1 – Case reports of immunosuppressed patients with long-term SARS-CoV-2 RNA detection.

Patient/age
(Year old)

Clinical condition RT-PCR
positivity

Replicative-competent
SARS-CoV-2 isolation

Commentaries References

Female/71 Chronic lymphocytic
leukemia, acquired hypo-
gammaglobulinemia

105 days On days 49 and 70 post-
symptom onset

Symptoms were not devel-
oped along viral infection.
Viral load was controlled
after day 70 by convalescent
plasma

39

Male/61 Liver transplant, immuno-
suppressive therapy for
11 years

52 days − Mild symptoms and lung
damage. Transient suspen-
sion of immunosuppressive
drugs and treatment with
lopinavir/ritonavir

40

Male/62 Heart transplant, immuno-
suppressive regimen

35 days On days18 and 21 post-
symptom onset

Mild symptoms. Immunosup-
pressive therapy was main-
tained. Hydroxychloroquine
was administered from day
7−14 up to end of
symptoms

41

Female/
9 months old

Myelomonocytic leukemia
with stem cell transplant

At least 4 months − Symptoms and lung damage
were developed after
45 days from first positive
SARS-CoV-2 RT-PCR. Con-
valescent plasma improved
lung lesions

42

Male/47 Follicular lymphoma in
remission. Immunocom-
promised status.

55−59 days On day 59 after first
positive test

Mild symptoms and lung
damage. RT-PCR negativiza-
tion on day 65

43

Male/49 Mixed connective tissue
disease, rheumatoid
arthritis, and systemic
lupus. Immunosuppres-
sive therapy and acquired
humoral deficiency

60 days − Development of respiratory
distress after a week from
first RT-PCR positive test.
Treatment with IVIG,
hydroxychloroquine and
azithromycin

44

Female/63 No Hodgkin lymphoma in
remission. Treatment
with anti-CD20 MAb was
suspended 37 days previ-
ous to symptoms onset

At least 74 days − Undetectable IgG on day 75
post-symptom onset. Hos-
pitalization on day 88 and
treatment with conva-
lescent plasma that
resolved symptoms

45

Male/60 Mantle cell lymphoma.
Treatment with anti-
CD20, prednisone,
cyclophosphamide
and doxorubicin

156 days Along 119 days Genome sequencing of nine
viral isolates, suggested
within-host evolution and
no reinfection

46

Female/78 Type 2 diabetes and hyper-
tension. Complications of
thyroidectomy 23 years
ago that required
tracheostomy

At least 47 days − Supplemental oxygen was
required. Discharge on day
55 post-symptom onset

47

Male/45 Antiphospholipid syndrome
complicated by diffuse
alveolar hemorrhage.
Anticoagulation therapy
and glucocorticoids

151 days − Initially, patient developed
fever. Complications avoid
COVID-19 resolution. Anal-
ysis of postmortem tissue
revealed high viral loads in
lungs and spleen. Viral
genome sequencing was
consistent with persistent
infection

48
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described mechanisms of inhibition of IFN-I synthesis and
response exerted by some structural, non-structural and
accessory proteins of SARS coronaviruses. Particularly, non-
structural proteins 1 and 6 from SARS-CoV-2 were more
potent to inhibit IFN-a signaling than the equivalent proteins
from SARS-CoV and MERS-CoV leading to higher viral replica-
tion.59 Thus, it could be proposed that such poor IFNmediated
response might at least partially promote SARS-CoV-2 persis-
tence, (besides a modest antibody response, as considered
above), whereas it is stimulated a continuing synthesis of



Fig. 1 –Main factors associated with SARS-CoV-2 RNA persis-
tence. *Immunosuppression induced for example, by drug
treatment in patients with cancer and transplant recipients.
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proinflammatory cytokines and chemokines, which contrib-
ute to COVID-19 pathogenesis (Fig. 2).

Analysis of postmortem lung tissue from individuals who
died of COVID-19 has shown wide presence of pneumocytes
and endothelial cells positive for SARS-CoV-2 RNA by in situ
hybridization, even though diagnosis in some patients had
occurred 30−40 days earlier, supporting a long-lasting viral
infection.60

Persistence in myeloid cells

Epithelial cells might not be the unique reservoir of hCoV
since monocytes and macrophages have also been described
as permissive cells. Particularly, 229E-CoV infects human
peripheral blood monocytes and monocyte-derived
Fig. 2 –Human coronaviruses (hCoV) infect different types of cells
cleared by the antiviral immune response, although they are also
ner. Persistently infected cells and some cells that cleared the viru
by a chronic production of cytokines and chemokines, contributin
those cells producing cytokines, notwithstanding virus had been
inhibit type-I, II and III interferon through activity of non-structur
immunity. vRNA, viral RNA.
macrophages (MDM), although infectious virus are below
limit of detection at 72 hpi, even though spike protein
remains detectable by immunofluorescence during at least
five days,61 suggesting myeloid cells enable a non-productive
infection. Furthermore, infection of the human monocytic
THP-1 cell line with 229E-CoV allows carrier persistence for at
least two months, characterized by 1−2% of infected cells and
low viral titers (101−102 TCID50/ml). Interestingly, both pri-
mary monocytes and THP-1 cells infected by 229E-CoV
secreted CCL5, CXCL10, CXCL11 and TNF-a in supernatants61;
thus, 229E-CoV persists in monocytes with low to undetect-
able release of infectious virus and might contribute to
inflammation. Notwithstanding, it is still controversial
whether myeloid cells are permissive to SARS-CoV-2. Bou-
maza et al. showed that primary human monocytes and
MDM were infected in vitro by SARS-CoV-2, but genome repli-
cation was active only during the first 48 hpi in monocytes.
Interestingly, viral contact induced expression of IL-6, IL-1b,
IL-10, TNF-a and TGF-b1 in both monocytes and macro-
phages, suggesting an M1/M2mixed phenotype.62,63 Addition-
ally, peripheral blood monocytes from COVID-19 patients
expressed higher levels of CD163 than healthy controls,
whereas this M2 macrophage marker has also been observed
in histopathology from lung tissue.62,64 On the other hand, a
population of large non-classical monocytes CD14+/CD16+

has been identified in peripheral blood mononuclear cells of
COVID-19 patients.65 This cell population is characterized by
altered morphology (e.g. vacuolated) and expression of signif-
icantly higher levels of CD80 and CD206 with respect to the
peripheral blood monocytes of normal size; IL-6 and TNF-a
are also expressed at higher levels in monocytes from COVID-
from respiratory and non-respiratory tissues. hCoV can be
able to persist either in productive or non-productive man-
s (e.g. myeloid cells) show an activation state characterized
g to inflammation. The dashed arrow represents particularly
eliminated. The different types of hCoV can differentially
al proteins, which are key players in evasion of the innate
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19 patients than that from healthy donors. Even though viral
infection was not evaluated in such large monocytes, an in
vitro assay of pseudovirus entry, coupled to green florescence
signal, showed up to 25% of primary monocytes were
infected, suggesting that myeloid cells are permissive to
SARS-CoV-2 infection.65

Histopathology of postmortem hilar lymph nodes and
spleens from COVID-19 subjects, showed peripheral macro-
phages (CD68+) and tissue-resident macrophages (CD169+)
expressing viral nucleocapsid protein, whereas T and B lym-
phocytes were negative for such viral antigen. Additionally,
only macrophages infected by SARS-CoV-2 expressed IL-6.66

Another study in pulmonary tissue showed through electron
microscopy SARS-CoV-2 particles localized in cytoplasm of
pneumocytes and alveolar macrophages.67

Such experimental evidence supports the hypothesis that
monocytes/macrophages allow at least a transitory produc-
tive infection by SARS-CoV-2 (Fig. 2); afterwards, a non-pro-
ductive infection is set up, whereas myeloid cells sustain
synthesis of proinflammatory and immunomodulatory cyto-
kines. Possibly immunomodulatory cytokines reflect an over-
production of proinflammatory factors that contribute to
disease severity and possibly to long-term sequelae observed
in convalescent COVID-19 patients.68,69 Further studies are
necessary to determine whether myeloid cells may be, not
only targets, but also vehicles for viral dissemination to extra
pulmonary tissues and long-term viral reservoirs.

Persistence in neural cells

Neurological manifestations have been described in some
hCoV individuals infected, including SARS-CoV-2. Central
nervous system (CNS) damage may be consequence of neuro-
invasion either by hematogenous or transneural routes,
although indirect damage such as that produced by immuno-
pathogenesis is also considered (reviewed by Abdelaziz and
Waffa,70 and by Kumar et al.71).

Early studies focused on coronavirus neurotropism
described susceptibility of human primary astrocytes and
microglia to 229E-CoV and OC43-CoV, even though infection
with 229E-CoV occurred in absence or at a low-to-undetect-
able production of viral particles.72 Both 229E-CoV and OC43-
CoV have displayed capability to persist in astrocytoma, neu-
roblastoma and oligodendrocytic human cell lines for 25−40
passages, with constant levels of viral RNA, whereas viral
titers may oscillate between undetectable to 107 TCID50/
ml.73,74 A mouse model to study neuropathology associated
with OC43-CoV infection showed in 30% of surviving mice,
after one year of their recovery from acute encephalitis,
smaller hippocampi, clusters of activated microglia and per-
sistent viral RNA; all these findings associated with altered
limb clasping reflex. Remarkably, viral protein synthesis was
undetectable. In the same study, infection of primary neural
cell cultures with OC43-CoV induced overproduction of TNF-a
and increased death of infected cells. Therefore, long-term
neuropathology in mice correlated with persistence of viral
RNA and activated microglia, which might be associated with
increased cytotoxicity.75

The characteristic coronavirus persistence in CNS associ-
ated with a lack of detection of infectious virus has been
partially explained by Liu et al. in an in vitro model of murine
oligodendrocytes persistently infected by mouse hepatitis
coronavirus. In such oligodendrocytic cell line, subgenomic
viral RNAs and viral proteins were produced constantly,
although infectious viruses were not detected by titration
assays. However, electron microscopy and biochemical tech-
niques revealed assembly of defective viruses with scarce
spike protein in the envelope, and consequently, impaired
infectivity.76 Other persistent viral infections are character-
ized by long-term detection of viral genomic RNA, possibly
also mRNA, but in absence of infectious virus, such as respira-
tory syncytial virus,77 Zika virus78 and measles virus.79 In
regard to measles, immunocompetent mice surviving acute
infection show persistent viral RNA and mRNA up to two
years post-infection, despite viral antigens are not detected.
However, depletion of CD4+ and CD8+ lymphocytes reacti-
vates viral protein expression, which is associated with devel-
opment of neuropathology, indicating adaptive immune
response controls measles virus replication although without
clearance, leading to a long-term “dormancy”, unless a tran-
sient immunosuppression occurs, allowing reactivation of
viral replication.79 Interestingly, it has been observed that
anti-SARS-CoV-2 specific CD8+ T cells are increased in the
respiratory tract of subjects with persistent viral RNA80; possi-
bly this immune cells prevent virus transmission or avoid
completion of the virus replication cycle, since contact tracing
studies have not identified cases of transmission from long-
term viral RNA carriers.20,80
Concluding remarks

Here we exposed that SARS-CoV-2 and other coronaviruses
potentially establish a long-term, non-productive persistent
infection in epithelial, myeloid and neural cells, which might
be associated with prolonged synthesis of inflammatory
mediators and cytotoxicity, contributing to airway chronic
inflammation and/or neurological sequelae, until viral clear-
ance is achieved.

Altered synthesis of IFN-I, IFN-II and IFN-III, besides a defi-
cient production of anti-SARS-CoV-2 IgM and IgG may be
determinant events that contribute to long-term infection in
some individuals.

Further research is necessary to understand whether coro-
navirus RNA persistence has impact not only on viral trans-
mission but also in pathogenesis.
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